
1.,. J. ~,$Ifl1<lart' Vol. 18. No.5. pp. 397-410. 1982
Priftkd in Gmt Britain.

HARMONIC WAVES IN A PERIODICALLY
LAMiNATED MEDiUM

0020-76831821OS039'1-14SOl0lll0
Perpmon Press lid.

A. H. SHAH

Department of Civil Engineering. University of Manitoba, Winnipeg, Canada

and

S. K. DATIA

Department of Mechanical Engineering, University of Colorado, Boulder. CO 80309. U.S.A.

(Recitvtd 10 May 1981; in ftvised form 20 October 1981)

AIlIfnct-A stiffness method using the continuity of displacement and traction at the interfaces of a
periodically laminated composite medium and the F1oquet's Theory has been presented here for studying
harmonic wave propagation in a layered composite. Both plane strain and antiplane strain problems have
been studied. The equations have been developed for both isotropic and anisotropic layers. Numerical
results are presented for the dispersion spectrum for propagation in a periodic two-layered medium and
these are shown to compare well with available exact results. Finally. numerical results are presented for a
boron-aluminum composite medium, which is modelled as acomposition of anisotropic and isotropic layers.

INTRODUCTION
The increasing use of fiber-reinforced composites in structural applications has generated
extensive research efforts in the area of dynamic behavior of periodically laminated medium.
Various approximate theories have been proposed. Some of these are the effective modulus
theory [I, 2), effective stiffness theory [3, 4], mixture theory[S-7] and the theory of interacting
continuum{8, 9). Recently in [10] higher order plate theory together with a smoothing operation
has been used to study the dispersion characteristics of two-layer periodic laminated media.

In addition to tbe approximate analysis mentioned above exact solutions for wave pro
pagation in laminated media have been presented. The antiplane{II-13] and plane strain[l4]
pioblems have been dealt with by imposing the displacement and stress continuity conditions at
the interfaces. Recently[lS-17] the dispersion characteristics for harmonic wave propagation
have been analyzed by using F1oquet's theory in conjunction with the elasticity solutions.

In all the works mentioned above each laminate has been assumed to be isotropic. In this
paper a stiffness method is presented for studying harmonic wave propagation in a periodically
laminated medium, where each lamina may have anisotropic properties. For the purpose of
clarity antiplane and plane strain motions are dealt with separately. An interpolation function is
assumed for each lamina and is characterized by a discrete number of generalized coordinates
at the interfaces. These generalized coordinates are the interface displacements and stresses,
thus ensuring the continuity of stresses and displacements across the bounding planes. By
applyins Hamilton's principle and using F1oquet's theory the dispersion equation is obtained as
a standard algebraic eigenvalue problem whose solution yields the dispersion relations as well
as the variation of stresses and the displacements. To assess the accuracy of this method the
numerical results are first compared with the existing results [15, 17] for the isotropic case. It is
shown that most of the important features of the surface in frequency-wave number space are
reproduced. Numerical results are then presented for a boron fiber-reinforced aluminum
composite. The attractiveness of the method presented is in the relative ease with which it can
be used to study wave propagation in layered media with anisotropic layers. In the following
equations are developed for this general case and then are specialized for the isotropic case.

EQUATIONS OF LINEAR ELASTICITY

We consider harmonic waves propagating through a two-layer periodically laminated elastic
body of unbounded extent (Fig. I). Any two adjacent laminates in the body then comprise a
unit cell. Both laminates in the unit cell are assumed to be homogeneous, ortho-rhombic, and
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Fig. 1, Geome-tiy of peiiodically laminated infinite elastic solid.

perfectly bonded to contiguous laminates. The stress-strain relation for each laminate in a>cell
IS:

a~1 == ewE~1 +ewE(g +ev;E~jl
ati> == eWEU! + eU)Eli ) + eUlEu,

yy 12 xx 22 n- 23 zz

a (i) == eti> '\I(i)
xy 66 1 xy' (i == 1,2)

(I)

where alJ>' EIP, 'YIP, and e\jl are stresses. strains and material constants of the ith laminate,
respectively. Each laminate has thickness 2h1jl and density p(i), respectively. The laminated
elastic body B is the union of all these cells.

Let u{i)(x;, yj, Zj; t), v(i)(Xj, yj, Zj; t) and w(i)(Zj. yj, Zj; t) be the Cartesiancomponen.s of the
displacement vector in the x, Y. and z-direction, respectively. for the ith laminate (see Fig. I).

Antiplane strain
For antiplane motion. we have

(2)

Substituting eqn (2) into strain-displacement equations. and these. in turn, in eqn (1) we
obtain stress-displacement relations. Substituting the stress-displacement relations into stress
equations of motions. Navier equations of motion can be obtained. S~lving the Navier
equations we can evaluate the displacement and stress in each laminate.

Dispersion relation is obtained by applying the following interface stress and continuity
conditions.

W(2}(X2. -h(2); t) == w(l)(x;. hell; t)

a (2}(x . - h(2)· t) = aOl(x h(lJ· t)yz 2, , yz I, ,

W(2l(Xh h(2l; t) == W(3l(X3. -hm; t)

a (2l(x h(2)· t) == a()(x -h(lJ· t)
yz 2" yz 3, ••

(3a)

(3b)

The quasi.periodicity of the Floquet solution[18] may be used to rewrite the two equations
(3b) in the form
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U (2l(x hl2l· t) = UOI(x -hOl• t) eil<,dyz 2, ~ )"Z I' , ,

399

(4)

where i =y-I, ky is the Floquet wave number and d =2(hOl + h(21
).

For isotropic laminates, using eqns (3a) and (3b), Sun et al.[ll), and Lee and Yang(l2]
obtained the dispersion equation for the wave propagating normal to the laminates, while
Robinson[13i obrained the dispersion equation for the general case. Recently, Delph et al.{15]
obtained the dispersion equation using eqns (3a) and (4). The equation, in general, is a 4 x 4
determinant whose elements are complex valued transcendental functions of frequency, wave
numbers, and depend on the geometric and material properties.

Plane strain
For plane strain motion, we have

U1il(Xi' Yi, Ii; t) = U(iJ(Xi, Yi; t)

Vlil(Xi, Yi' Zi; t) = vli)(Xj, Yi; t)

wHl(Xj, Yj, Zi; t) = O.

(5)

By carrying out similar oerations as explained for the Antiplane Strain case the dispersion
equation is obtained by applying the interface traction and displacement continuity equations as

UI2 '(X2' _h I21 ; t) = ul1J(x.. hl1J ; t)

V(21(X2' -h l21 ; t) = VOl(Xl' hOl ; t)

U~:(X2' - hl2l ; t) = U~I:(Xl> h(ll; t)

U~;(X2' -h
I21

; t) =U~I;(X .. h(ll; t)

and

Ul2l(X2' hOI; t) =U(3)(X3, -hoI; t)

V(21(X2, h 121; t) =V(3)(X3, -h(ll; t)

U~;(X21 hl2l ; t) = u~\~(X31 - h(ll, t)

U~;(X2'h121
; t) =U?;(X3' -h(ll, t).

Using Floquet's theory, the four equations (6b) can be rewritten in the form

1'''1\. • l'"tl. 11\. • /1\ . .'1. ~

V"'(X2, h"'; t) = v"'(Xj, -h"'; t) e"y"

U~2;(X2' h(21; t) = uW(Xl> -h(ll; t) ejkyd

U~2;(X2' h121
; t) =U~I;(XI' - h(ll; t) e ikyd

•

(6a)

(6b)

(7)

For isotropic laminates, Sve{l4] used eqns (6a, b) while Delph et al.[16, 17] used eqns (6a)
and (1) to obtain the dispersion equation. The dispersion equation, in general, is an 8 x 8
determinant with elements that are transcendental functions.

In the following we present a general method of obtaining approximate dispersion equations
by a stiffness method which is applicable to both isotropic and anisotropic laminates having
m-Iayer periodicity. For the sake of simplicity the method is presented for antiplane and plane
strain motions. However, it can easily be used for the three-dimensional case.

APPROXIMATE SOLUTION METHOD

Let us consider a periodically laminated elastic body of unbounded extent with unit cell
consisting of m laminas as shown in Fig. 2. Thus, it is possible to model each laminate of Fig.
55 Vol. 18. No. ~-c
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Fig. 2. m·layered periodicity.

I with a number of laminas in order to achieve a better physical representation. Each lamina is
assumed to be homogeneous, ortho"rhombic, and perfectly bonded to contiguous laminas.
Laminar bounding planes are designated as nodal planes in Fig. 2.

Antiplane strain
For the antiplane motion the interpolation function for the jth lamina is taken to be of cubic

form.

where kx is the wave number in x direction, w is the circular frequency. j = j + 1,

(8)

Wi =w(i)(x;, -hUll;

~j = a~;(xj, - hUI);

Wi = w(il(x;. hUI)

~j = a~;(xb hUll (9)

Wi. f3i are complex-valued amplitudes of the ith nodal displacement and stress. respectively.
The f",( T/i) appearing in eqn (8) are given by

fl( 1/;) = (2 - 377i + 1/l)/4

fz( 1/;) = (2 +377i - 77l)/4

UT/;) =(1- 11; - 77/ +T//)hU)/4

U'fIi) = (-I - Tlj + TIl + T/?)h(i)/4 (10)

where 11j = yJ hUl.
Interpolation function (8) is so chosen as to satisfy interface stress and displacement

continuity conditions (3a). The potential energy and kinetic energy for the jth lamina are
obtained by integrating over both the lamina thickness and the wavelength L.

(11)

where bar over the quantity designates the complex-conjugate. After differentiating· the
assumed displacement field. its substitution into the potential· and kinetic energy expressions
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leads to forms given in the matrix notation by

V,(i) = ~ {f,V[kd{r,}

T,(i) =~ {f,}T[m.J{r,}
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(12)

where {'IV = {wiPjwjl9iV, and [k,J and [mtl are the stiffness and mass matrices of the lamina.
Explicit form of (a"J = O/L){k,- timtl is given in Appendix A. It may be noted that the matrix
a" is real.

By summing over all the laminas the Hamiltonian HI can be defined as

(13)

F1oquet's solution (4) can be written in the form

(4)

where

d = i 2hUl
•

jsl

Applying Hamilton's principle to (13) and then utilizing the F1oquet's relation (4), we can write
the equilibrium equations for nodes 2 to m+ I. After rearranging terms, these equations yield
the dispersion relation as an algebraic eigenvalue problem

(15)

where {Rtf ={w.lJ, W21J2 ••• WlftIJIft}, and [A,) and [Btl are 2m x 2m complex-valued matrices,
whose elements depend on the material and geometric properties and are polynomial functions
of the wave numbers kz and kyo

Plane strain
Steps followed in deriving the dispersion relation for plane strain motion are the same as

those used in the antiplane strain case. Interpolation functions satisfying interface stress and
displacement continuity conditions (6a) are assumed to be of the forms

{::;;} =ei(l.x-w') [UjUi c]- :;: c12-~ ] I~~~~:~ (16)
VjVi ~_~ aUj .!!k cW ~ f3('T/j)

C22 C22 aXj c~~ - CW aXj f,.( 'T/j)

where j= i+ I,

{U·.,·V·....·}T = {u(i)(T(j) v(j)(T(j)} T n
I I tv. ~y '11 Yj=-h I

{ UIT.vn}T ={U(i)(Tlj) V(j)(T(i)} T ('
I I J- i ;ry YY Yj= h .,

and flft(T/j) are given by eqn (10). For brevity of presentation the case of real kz is presented
here.

The potential energy and kinetic energy for the ith lamina are

(17)
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After differentiating the assumed displacement fields (16), substituting them into energy
expressions, integrating over one wavelength L, leads to

vt) =~ {f2}T[k2]{r2},

Ttl = ~ {'2f[m2]{r2},
() 8)

where {r2}T = {UiTiV;<TiU(I)VP)}T, and [k2] and [m21 are the stiffness and mass matrices of the
lamina. Explicit form of the Hermitian matrix [sPl = (1/ L)[k2- w2m21 is given in App.endix B.

Floquet's relation (7) can be written as

(19)

Applying Hamilton's principle to (18) and using eqn (19) the equilibrium equations for nodes
2 to m + 1 can be written. This yields the dispersion relations as an algebraic eigenvalue
problem:

(20)

where {R2} T = {UIT, V,U, .•• UmTmVmUm }, and [A21and [B21are 4m x 4m complex-valued matrices
with polynomial elements.

It may be mentioned that a stiffness analysis was employed by Dong and Nelson [19] in
studying the vibration characteristic of laminated orthotropic plates. They employed an
interpolation function satisfying only interface displacement continuity conditions.

Numerical results and discussion
For given material and geometric parameters, each of the dispersion eqns (15) and (20)

relates frequency to two wave numbers. The roots of this equation define a surface in
frequency-wave number space, which is the dispersion surface. This surface is in general
discontinuous at ky =(n1Tld), n =1,2, .... These planes of discontinuity divide the surface into
Brillouin zones. Each equation admits complex as well as real wave number kyo At the end of
the Brillouin zones, except kx = 0, we get complex branches. Thus the surface can be
interpreted in terms of passing and stopping bands. Also at the end of the Brillouin zones, we
get symmetric-symmetric, antisymmetric-symmetric, and symmetric-antisymmetric va.riations
of the displacement. When kx = 0, the dispersion eqn (20) yields two (2m x2m) equations. One
of these equations is the dispersion equation for longitudinal (P) waves propagating normal to
the laminates, while the other is for shear (5) waves propagating normal to the laminates.

To guage the accuracy and range of applicability of this approach, we consider in Example 1
a two-layered periodic isotropic laminated medium. The numerical results, from elasticity
solutions for this case, are presented by Delph et al.[15, 17]. In Example 2, we consider a
particular case of a boron fiber-reinforced aluminum composite [20].

Example 1. Isotopic laminates. The material and geometric properties of this two-layered
periodic composite are

'Y = c~1ci2 = 0.02,

The Poisson's ratios are VOl =0.35 and v(2) =0.3.
Each laminate was subdivided into two and then three laminas, thus creating four- and

six-layered periodicity. It was noticed that the results for lower modes did not appreciably
change by increasing the number of laminas. Results of four-layered periodicity are presented
here. Most of the figures of [15, 17] were reproduced by our method, only a few are given here
for illustration purposes.

In Figs. 3-6 we present our results for antiplane motion while in Figs. 7-10 we present the
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Fig. 3. Curves of constant ( on the antiplane-strain dispersion surface.
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Fig. 4. Curves of constant n on the antiplane-strain dispersion surface.

results for plane strain motion. Wherever there is deviation we have plotted results from Refs.
[15, 17).

The results are presented in non-dimensional form as

n= 2h:1

w ~(~). (21)

Figure 3 shows some results for the first four Brillouin zones for sections of the surface
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lying in planes of constant (, while Fig. 4 shows curves of constant frequency on the surface for
the first two Brillouin zones. Figure 5 shows both the real and complex branches for a protion
of the surface in (= 0 plane. Here the imaginary T/-axis has been plotted on the real plane for
clarity. Along the complex branches, the real part of T/ remains constant while the imaginary
part varies. Figure 6 shows the mode shapes at (= 0 for the first antisymmetric-symmetric and
symmetric-antisymmetric branches. In general matching with the results of [151 is excellent for
all ranges of ( and T/.

The dispersion curves for P and S waves propagating normal to the layering are sketched
on an extended zone scheme in Fig. 7 over the first three Brillouin zones. The complex
branches originating at the ends of the Brillouin zones are also included. where the imaginary
axis has been rotated onto the real plane for clarity. Figure 8 shows the intersection of the S
surface with planes of constant ( over the first two Brillouin zones, while Fig. 9 shows the
intersection of the P surface with planes of constant ( over the two Brillouin zones. Figure 10
shows the complex branches for Re (T/) = 0.2 and (= 0.14. In this case of plane strain, it was
found that good results were obtained for « I. Increasing the number of laminas did not
appreciably improve the results.

Example' Z. Fiber-reinforced boron-aluminum composite. The method outlined earlier is
now used to derive the dispersion characteristics in a fiber-reinforced composite. The exampk
chosen is that of boron-fiber reinforced layers sandwiched between thin layers of aluminum.
The material and geometric parameters are chosen as [20],

pi II = 2.534 g/cm3
,

cl'/ = 2.45, cIY = 0.604, cW = 1.7970, c~ = 0.566

cW =0.573, c~ =0.267

h(\)
€ = -,;m = 9.

The units for C;j are lOll N/m2
• Here the superscript (I) refers to the fiber-reinforced layer and

(2) refers to the aluminum layer. The x-axis is taken parallel to the fiber direction.
Figures 11-13 show the dispersion curves. The dispersion curves for the P- and S-waves are

sketched on an extended zone scheme in Fig. 11 over the first two Brillouin lones. The complex
branches originating at the ends of the Brillouin zones are sketched also. It is noted that since
the material properties of the two layers are not markedly different visible complex branch does
not start until the third mode. Figures 12 and 13 show the intersections of the quasi-shear and
quasi-longitudinal wave surfaces with planes of constant ( over the first two Brillouin zones.
The marked departure in the behavior of the (¢ 0 branches from the (= 0 branch is quite
significant.

CONCLUSION

It has been shown that the stiffness method presented here using the continuity of
displacements and tractions and the Floquet's theory gives excellent results for the lower
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modes of wave propagation in a layered composite_ Even at hi8her modes the results are in
good qreement with tbe available exact solutions for isotropic layers. As indicated before, one
major advantaae of the method is that the determinantal equation governing dispersion involves
only polynomial functions of the wave number and the frequency, whereas these are transcen·
dental in the exact solution. Another advantage of this technique is its applicability to two· and
three-dimensional problems of wave propagation in anisotropic layers. In this paper only the
two-dimensional problem bas been studied. The solution to the three-dimensional problem will
be presented in a future communication.
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APPENDIX A
Elements of [SO) matrix for antiplane strain

Omitting the superscript i for the ith lamina and defining

(AI)
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the elements of the symmetric [s"1 matrix are given by

APPENDIX B
Elements of Is'] matrix for plane strain

Omitting the superscript i for the ith lamina and defining

Q. = h(cllk~-(.h 07= h(C66k~- w2).

QJ= k.(CI2+ C66); Q~= CI2!C22.

the elements of the Hermitian matrix Is'] are given by

409

(A2)

(BI)
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